Showing posts with label Calopteryx. Show all posts
Showing posts with label Calopteryx. Show all posts

Wednesday, October 16, 2013

On linking ecology to sexual selection



Together with John Waller, I have a paper that is now out in American Naturalist as an E-article, meaning that it is "Open Acess" and possible for anyone to download. Go here, if you would like to download a PDF of this paper. I am very much in favour of the OA-model of publishing, and I certainly hope that the publication fees we paid will also result in more citations.

This study, which was fun to do and write up, takes a look at the important link between ecology and sexual selection. We were interested in the functional significance and evolutionary consequences of wing pigmentation in calopterygid damselflies, and we used a mixture of comparative phylogenetic analyses and field studies using thermal imaging to adress this issue. In particular, we wanted to see if there was any obvious thermal benefit of male wing pigmentation, which also has important functions in sexual selection, male-male competition and species recognition. Turns out that the evidence for such a thermal benefit is mixed, although there is a clear biogeographic signature in the sense that pigmented clades are more common in northern regions and temperate climates.

Wing pigmentation is also significantly associated with eleved speciation and extinction rates, using so-called BiSSE-analyses ("Binary Speciation and Extinction") as implemented in Diversitree. This latter result provides comparative support to our previous experimental work demonstrating that wing pigmentation functions as a species recognition character between C. splendens and C. virgo, and suggest that wing pigmentation is generally involved across the entire group as a promoter of speciation, although most species formed by such non-ecological sexual selection tend to go extinct fairly soon after they have formed.

In general, I think there are too few studies where comparative approaches and field experiments are combined, as both have strength and weaknesses and inferences could be stronger if they are combined (Disclaimer: in case some sensitive theoretical ecologist reads this post, I do of course also think there are other interesting and useful research approaches, such as mathematical models).

Ecology and Sexual Selection: Evolution of Wing Pigmentation in Calopterygid Damselflies in Relation to Latitude, Sexual Dimorphism, and Speciation

American Naturalist (in press, November 2013)

Abstract

Our knowledge about how the environment influences sexual selection regimes and how ecology and sexual selection interact is still limited. We performed an integrative study of wing pigmentation in calopterygid damselflies, combining phylogenetic comparative analyses, field observations and experiments. We investigated the evolutionary consequences of wing pigmentation for sexual dimorphism, speciation, and extinction and addressed the possible thermoregulatory benefits of pigmentation. First, we reconstructed ancestral states of male and female phenotypes and traced the evolutionary change of wing pigmentation. Clear wings are the ancestral state and that pigmentation dimorphism is derived, suggesting that sexual selection results in sexual dimorphism. We further demonstrate that pigmentation elevates speciation and extinction rates. We also document a significant biogeographic association with pigmented species primarily occupying northern temperate regions with cooler climates. Field observations and experiments on two temperate sympatric species suggest a link between pigmentation, thermoregulation, and sexual selection, although body temperature is also affected by other phenotypic traits such as body mass, microhabitat selection, and thermoregulatory behaviors. Taken together, our results suggest an important role for wing pigmentation in sexual selection in males and in speciation. Wing pigmentation might not increase ecological adaptation and species longevity, and its primary function is in sexual signaling and species recognition.

Tuesday, October 19, 2010

Remembering the summer: field work with damselflies in Skåne

 

Winter is approaching fast, and what could be better then than to try to remember the past beatiful summer for as long as possible?Varm summers means field work with insects, at least for some of us. This was also the case for myself, CAnMove postdoc Sophia Engel and a number of other students and postdocs working with field studies of calopterygid damselflies. Here is a nice movie about CAnMove-related field work from Lund University's Youtube-channel. This movie contains an interview with Sophia and myself, where we explain what kind of experiments we did, and why. Unfortunately, this movie is in Swedish, not English, but at least you can enjoy the pictures!

Basically, we have quantified flight speeds of individually marked damselflies of two species (Calopteryx virgo and C. splendens), and we relate this performance-trait to wing morphology (shape), longevity in the field and mating success (sexual selection). A key player in this system is an enigmatic avian predator which kills these insects: The white wagtail (Motacilla alba), which also appears in the movie. The ornithologists among you readers will hopefully also realise how fascinating this insect system actually is, since it obviously also involves a bird! A key goal of ours is to link morphology to performance and fitness, and combine flight speed estimates with data on morphology and fitness. Such studies are rarely possible to perform, particularly not in natural populations of insects, so we are quite excited about the results that will hopefully come out from this work.

If the movie above does not work, you could follow this link instead. Enjoy! And go back and watch this movie whenever you miss the summer...

Wednesday, August 18, 2010

A role for ecology in male mate discrimination of immigrant females in Calopteryx damselflies?

Dear all,

We have recently published another Calopteryx paper, this time in the Biological Journal of the Linnean Society. The paper is investigating male mate preferences and asks the question if males have the ability to distinguish between immigrant and resident females. Below is the abstract and the link to the paper.
 

A role for ecology in male mate discrimination of immigrant females in Calopteryx damselflies?

MAREN WELLENREUTHER, ELODIE VERCKEN and ERIK I. SVENSSON

ABSTRACT
: Sexual selection against immigrants is a mechanism that can regulate premating isolation between populations but, so far, few field studies have examined whether males can discriminate between immigrant and resident females. Males of the damselfly Calopteryx splendens show mate preferences and are able to force pre-copulatory tandems. We related male mate responses to the ecological characteristics of female origin, geographic distances between populations, and morphological traits of females to identify factors influencing male mate discrimination. Significant heterogeneity between populations in male mate responses towards females was found. In some populations, males discriminated strongly against immigrant females, whereas the pattern was reversed or non-significant in other populations. Immigrant females were particularly attractive to males when they came from populations with similar predation pressures and densities of conspecifics. By contrast, immigrant females from populations with strongly dissimilar predation pressures and conspecific densities were not attractive to males. Differences in the abiotic environment appeared to affect mating success to a lesser degree. This suggests that male mate discrimination is context-dependent and influenced by ecological differences between populations, a key prediction of ecological speciation theory. The results obtained in the present study suggest that gene-flow is facilitated between ecologically similar populations.



http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2010.01464.x/pdf

Friday, August 14, 2009

Calopterygid research from this summer covered by Swedish media























For those of you who have not followed Swedish TV- or radio the last days, I would like to point to a couple of programs where our research on Calopteryx splendens and Calopteryx virgo has been covered. First, the regional TV-news channel "Sydnytt" has a 2-minute interview with me at Klingavälsåns Naturreservat, where I am interviewed in the field, and where I discuss the potential consequences of future climate change. You can watch this programme here.

Second, the popular science radio programme "Vetandets Värld" has a 20-minute programme, where both I and Anna Runemark are interviewed, about our learning experiments on mate recognition. Also, our physics-colleagues are interviewed about the laser-studies that were performed at Klingavälsån och what they can inform us about the behaviour of damselflies. You can listen to this programme here.