Friday, November 19, 2010

Journal cover in "Evolution" and the role of learned mate preferences in population divergence

Most of you have already seen this - but I post it again in case somebody missed it. We've got the journal cover in the November 2010 issue of Evolution, featuring our article about learned mate preferences in the banded demoiselle (Calopteryx splendens). This paper has also been highlighted by the popular science site Science Daily, and it will also be covered in a popular science radio programme in Germany, since I was recently interviewed about the study by a journalist from our southern neighboring country.

Apart from our own article, the same issue contains a number of interesting other articles about sexual selection, most notably Richard Prums paper about null models in sexual selection in which he argues that the Lande-Kirkpatrick (NK)-model as the most appropriate such null model, a paper we discussed at the lab-meeting last week. Here is the title and abstract of our own paper:


Erik I. Svensson, Fabrice Eroukhmanoff, Kristina Karlsson, Anna Runemark & Anders Brodin

Learning and other forms of phenotypic plasticity have been suggested to enhance population divergence. Mate preferences can develop by learning, and species recognition might not be entirely genetic. We present data on female mate preferences of the banded demoiselle (Calopteryx splendens) that suggest a role for learning in population divergence and species recognition. Populations of this species are either allopatric or sympatric with a phenotypically similar congener (C. virgo). These two species differ mainly in the amount of wing melanization in males, and wing patches thus mediate sexual isolation. In sympatry, sexually experienced females discriminate against large melanin wing patches in heterospecific males. In contrast, in allopatric populations within the same geographic region, females show positive (“open-ended”) preferences for such large wing patches. Virgin C. splendens females do not discriminate against heterospecific males. Moreover, physical exposure experiments of such virgin females to con- or hetero-specific males significantly influences their subsequent mate preferences. Species recognition is thus not entirely genetic and it is partly influenced by interactions with mates. Learning causes pronounced population divergence in mate preferences between these weakly genetically differentiated populations, and results in a highly divergent pattern of species recognition at a small geographic scale.

No comments:

Post a Comment